If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+18X-128=0
a = 1; b = 18; c = -128;
Δ = b2-4ac
Δ = 182-4·1·(-128)
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{209}}{2*1}=\frac{-18-2\sqrt{209}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{209}}{2*1}=\frac{-18+2\sqrt{209}}{2} $
| 6x-32=118 | | x+2x+2x+20=180 | | 126+(3x+8)+(2x+10)+(3x)=540 | | 25=-15+x | | 5h+1.2=8.3 | | 3x-35=-26 | | 4^x-3=3^3x | | 9x+81=32 | | 9x+81=36 | | 27^(5x+2)=1 | | 6^x+1=2 | | 3x+126+(3x+8)+(3x+10)=540 | | -1.3+y/6=-20.5 | | n=3.5=6n7 | | (5+6w)(2)= | | v-5/2=-10 | | -6+n/4=2 | | 2x-3x-15=0 | | -2=-4+k/12 | | 44/(x-2,3)=0,55 | | (1/2)x+(1/3)x=10 | | -4=-3+r/12 | | 24^2+r^2=r^2+24r+144 | | 3(2+3)-4y=-3 | | -4=-3+r/15 | | -16t^2+64t+128t=-3 | | m-8/5=-5 | | y=800+2200 | | 24x+120=0 | | -4=-2+v/2 | | 3(t+4)-(2t+3)=-4 | | X/4x+10-1/2=22 |